Spatial Mapping: Graded Precision of Entorhinal Head Direction Cells

نویسنده

  • Kate Jeffery
چکیده

Representation of head direction in medial entorhinal cortex shows a gradient of precision, from high directional precision dorsally to low ventrally; this parallels the gradient of spatial scale in place and grid cells, and suggests that the brain constructs spatial maps of varying resolution, perhaps to serve different requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Head direction is coded more strongly than movement direction in a population of entorhinal neurons.

The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head dire...

متن کامل

Crystals of the brain

When we find our way in the environment, we need to integrate information about location, direction and distance into a coherent map-like representation. Our work over the last 10 years has suggested that the medial entorhinal cortex plays a central role in this process. A key component of the entorhinal network for spatial mapping is the grid cell, which we discovered, together with our collea...

متن کامل

Topography of Head Direction Cells in Medial Entorhinal Cortex

BACKGROUND Neural circuits in the medial entorhinal cortex (MEC) support translation of the external environment to an internal map of space, with grid and head direction neurons providing metrics for distance and orientation. RESULTS We show here that head direction cells in MEC are organized topographically. Head direction tuning varies widely across the entire dorsoventral MEC axis, but in...

متن کامل

Conjunctive representation of position, direction, and velocity in entorhinal cortex.

Grid cells in the medial entorhinal cortex (MEC) are part of an environment-independent spatial coordinate system. To determine how information about location, direction, and distance is integrated in the grid-cell network, we recorded from each principal cell layer of MEC in rats that explored two-dimensional environments. Whereas layer II was predominated by grid cells, grid cells colocalized...

متن کامل

The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized.

The discovery of speed-modulated grid, head direction, and conjunctive grid x head direction cells in the medial entorhinal cortex has led to the hypothesis that path integration, the updating of one's spatial representation based on movement, may be carried out within this region. This hypothesis has been formalized by many computational models, including a class known as attractor network mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014